Surfactant proteins A and D inhibit the growth of Gram-negative bacteria by increasing membrane permeability.

نویسندگان

  • Huixing Wu
  • Alexander Kuzmenko
  • Sijue Wan
  • Lyndsay Schaffer
  • Alison Weiss
  • James H Fisher
  • Kwang Sik Kim
  • Francis X McCormack
چکیده

The pulmonary collectins, surfactant proteins A (SP-A) and D (SP-D), have been reported to bind lipopolysaccharide (LPS), opsonize microorganisms, and enhance the clearance of lung pathogens. In this study, we examined the effect of SP-A and SP-D on the growth and viability of Gram-negative bacteria. The pulmonary clearance of Escherichia coli K12 was reduced in SP-A-null mice and was increased in SP-D-overexpressing mice, compared with strain-matched wild-type controls. Purified SP-A and SP-D inhibited bacterial synthetic functions of several, but not all, strains of E. coli, Klebsiella pneumoniae, and Enterobacter aerogenes. In general, rough E. coli strains were more susceptible than smooth strains, and collectin-mediated growth inhibition was partially blocked by coincubation with rough LPS vesicles. Although both SP-A and SP-D agglutinated E. coli K12 in a calcium-dependent manner, microbial growth inhibition was independent of bacterial aggregation. At least part of the antimicrobial activity of SP-A and SP-D was localized to their C-terminal domains using truncated recombinant proteins. Incubation of E. coli K12 with SP-A or SP-D increased bacterial permeability. Deletion of the E. coli OmpA gene from a collectin-resistant smooth E. coli strain enhanced SP-A and SP-D-mediated growth inhibition. These data indicate that SP-A and SP-D are antimicrobial proteins that directly inhibit the proliferation of Gram-negative bacteria in a macrophage- and aggregation-independent manner by increasing the permeability of the microbial cell membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Murine bactericidal/permeability-increasing protein inhibits the endotoxic activity of lipopolysaccharide and gram-negative bacteria.

Recognition of LPS by TLR4 initiates inflammatory responses inducing potent antimicrobial immunity. However, uncontrolled inflammatory responses can be detrimental. To prevent the development of septic shock during an infection with Gram-negative bacteria, the immune system has developed mechanisms to neutralize LPS by specialized proteins. In this study, we report the recombinant expression an...

متن کامل

Antimicrobial activity of native and synthetic surfactant protein B peptides.

Surfactant protein B (SP-B) is secreted into the airspaces with surfactant phospholipids where it reduces surface tension and prevents alveolar collapse at end expiration. SP-B is a member of the saposin-like family of proteins, several of which have antimicrobial properties. SP-B lyses negatively charged liposomes and was previously reported to inhibit the growth of Escherichia coli in vitro; ...

متن کامل

Two Proteins from Snake Venom have Potent Antibacterial Effects against Bacillus anthracis and Streptococcus pneumoniae

Background: Antibacterial proteins are widely expressed in snake venoms. Previously, we have isolated two immunodominant proteins with molecular weights of 14 and 65kD from the snake venom of Naja naja oxiana (N. oxiana). It was demonstrated that they had potent inhibitory effects against gram-positive bacteria, S. aureus and B. subtilis but were less effective against gram-negative bacteria, s...

متن کامل

The Antimicrobial Effects of Hydro-Extract of Mentha Piperita Lamiaceae Essential Oil Nanoemulsion on Gram-negative Bacteria of Escherichia coli: A Laboratory Study

Background and Objectives: Since infectious microbial diseases belong to the most common sicknesses in the world, it is necessary to discover and explore new antibacterial materials. Mentha Piperita Lamiaceae is one of the most consumed medicinal plants in the world; having outstanding antimicrobial, pesticide, antiparasitic, antifungal and therapeutic properties. Therefore, aim of this study w...

متن کامل

New insight into the application of outer membrane vesicles of Gram-negative bacteria

This review presents a brief outline of our current knowledge of the structure and chemical composition of the outer membrane vesicles (OMVs), originating from the surface of Gram negative bacteria including their outer membrane proteins and lipopolysaccharides. Moreover, the functional roles and applications of OMVs in medical research such as OMV-based vaccines, OMV adjuvants properties, OMV ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 111 10  شماره 

صفحات  -

تاریخ انتشار 2003